Protein Information

ID 44
Name calcium channel (protein family or complex)
Synonyms calcium channel

Compound Information

ID 1690
Name IBA
CAS

Reference

PubMed Abstract RScore(About this table)
2433043 Ikemoto Y, Mitsuiye T, Ishizuka S: Reduction of the voltage-dependent calcium current in Aplysia neurons by pentobarbital. Cell Mol Neurobiol. 1986 Sep;6(3):293-305.
Effects of pentobarbital on the calcium current of Aplysia neurons were investigated under current- and voltage-clamp conditions using the conventional two-microelectrode technique. Pentobarbital attenuated the progressive broadening of repeated action potentials of somata, suggesting a reduction in the calcium current. When calcium ion was replaced with barium ion in the perfusing solution, in which neither sodium nor potassium ions carried transmembrane currents, the barium current (IBa) which flowed through the calcium channel of the cell membrane was generated by depolarizing pulses of several hundred milliseconds applied every 1 min from a holding potential of -50 mV. The IBa was not affected by tetrodotoxin (30 microM). The current was decreased by pentobarbital (0.1-5 mM) in a dose-dependent manner. The inhibition was much greater at a lower pH of the perfusate, indicating that the uncharged form of the agent was responsible. The voltage-dependent inactivation of the IBa proceeded with two time constants [190 +/- 21 and 2020 +/- 146 msec (N = 4) at -10 mV], both of which were shortened by adding 1 mM pentobarbital [to 120 +/- 18 and 540 +/- 51 msec (N = 4), respectively]. The IBa recovered from the inactivation with two time constants [60 +/- 7 and 871 +/- 76 msec (N = 3) at -50 mV]. The anesthetic (1 mM) prolonged both of them, to 124 +/- 20 and 1480 +/- 172 msec (N = 3), respectively, resulting in a use-dependent depression of the current at 2-Hz stimulation. Pentobarbital reduced the IBa to a greater extent when the holding potential was more positive (-30 instead of -50 mV), indicating a higher affinity of the drug to the inactivated state of the channel. These findings suggest that the attenuation of the progressive broadening of successive spikes by pentobarbital is due to a decrease in the voltage- and time-dependent calcium current, ending in depression of transmitter release from the nerve terminal.
0(0,0,0,0)