9335409 |
Zhang S, Sawanobori T, Hirano Y, Hiraoka M: Multiple modulations of action potential duration by different calcium channel blocking agents in guinea pig ventricular myocytes. J Cardiovasc Pharmacol. 1997 Oct;30(4):489-96. Effects of extracellular applications of different types of Ca2+ channel blocking agents (Mn2+, verapamil, and nisoldipine) on action-potential duration and membrane currents were studied by the whole-cell patch-clamp technique in guinea pig ventricular myocytes. Low concentrations of Mn2+ (1 mM) and verapamil (1 microM) prolonged action-potential duration at 90% repolarization (APD90) with a suppressed plateau phase. Increases in Mn2+ (5 mM) and verapamil (5 microM) shortened APD90 with a further depression of the plateau. Nisoldipine (0.2-1 microM) shortened APD90 without lengthening it. Applications of Mn2+ and verapamil suppressed amplitudes of the L-type Ca2+ current (ICa), the delayed outward K+ current (IK), and the inward rectifier K+ current (IK1). Furthermore, the ratios of ICa:IK inhibition were similar by low and high concentrations of Mn2+ and verapamil. Nisoldipine selectively suppressed ICa without effect on IK and IK1. A low concentration (1 mM) of Mn2+ not only decreased the peak amplitude of ICa but also delayed its decay time course, which caused an increase in late ICa amplitude at the end of a 200-ms depolarizing pulse. Both verapamil and nisoldipine suppressed peak ICa without affecting its decay. Whereas Mn2+ suppressed IBa without changing its decay time course, verapamil and nisoldipine speeded up the IBa decay with suppressed amplitude of IBa. We conclude that different types of Ca2+ channel blocking agents (Mn2+, verapamil, and nisoldipine) diversely modulate APD because of their multiple modes of actions on ICa and IK. |
2(0,0,0,2) |