Protein Information

ID 2132
Name Ciliary neurotrophic factor
Synonyms CNTF; Ciliary neurotrophic factor; HCNTF; Ciliary neurotrophic factors

Compound Information

ID 1690
Name IBA
CAS

Reference

PubMed Abstract RScore(About this table)
12843240 Martin A, Hofmann HD, Kirsch M: Glial reactivity in ciliary neurotrophic factor-deficient mice after optic nerve lesion. J Neurosci. 2003 Jul 2;23(13):5416-24.
There is evidence that ciliary neurotrophic factor (CNTF), in addition to its neurotrophic activity, positively regulates astrogliosis after CNS injury. CNTF and its receptor, CNTFRalpha, are strongly upregulated in activated astrocytes. Application of CNTF upregulates GFAP expression in cultured astrocytes and induces various aspects of gliosis in the intact brain. Here we examined whether inactivation of the CNTF gene results in the expected changes in glial reactivity by analyzing gliosis in the superior colliculus (SC) after optic nerve crush. Basal expression levels of GFAP and vimentin in unlesioned CNTF-deficient mice were reduced by 66 and 37%, respectively. Absolute numbers of astrocytes were found not to be different. Surprisingly, however, lesion induced robust activation of astrocytes in CNTF-deficient mice; the time course of activation was even accelerated as compared with wild-type animals. At later time points, activation reached the same level. With respect to microglial cells, basal expression of microglial markers was unaltered in CNTF-knock-out animals. Lesion-induced upregulation of Iba-1, ICAM-1, and F4/80 in microglial cells was unaffected in CNTF-deficient animals. Differences were observed with respect to the time course of microglial activation, different markers being affected differentially. We further demonstrate that lesion induces upregulation of CNTF-related cytokines (LIF, NNT-1) and, interestingly, a more pronounced upregulation of cytokine receptor components (LIF receptor beta, gp130) and TGFbeta in CNTF-deficient animals. Our results thus indicate that CNTF is required for the development and maintenance of the mature astrocyte phenotype and provide evidence that CNTF is part of the complex regulatory network modulating lesional glial reactivity after lesion.
11(0,0,0,11)