15571668 |
Ohta T, Kai T, Ito S: Evidence for paracrine modulation of voltage-dependent calcium channels by amperometric analysis in cultured porcine adrenal chromaffin cells. Brain Res. 2004 Dec 31;1030(2):183-92. We investigated the endogenous control through vesicular contents of voltage-dependent Ca2+ channels (VDCCs) in cultured porcine adrenal chromaffin cells. To examine paracrine regulation of VDCCs, catecholamine release was monitored amperometrically together with patch-clamp recording under culture conditions at different cell densities. A depolarizing pulse evoked Ca (2+)- (ICa) and Ba (2+)-currents (IBa) in Ca (2+)- and Ba (2+)-containing solutions, respectively. In cells cultured at high density, stop-flow of the external solution decreased the I (Ba) concomitant with a sustained increase of amperometric current (Iamp), but not in cells at low density, suggesting the endogenous modulation of VDCCs in a paracine fashion. The degree of the prepulse facilitation was similar regardless of the flow condition. Application of noradrenaline (NA), ATP, methionine-enkephalin (ENK) or protons decreased IBa. The extent of the prepulse facilitation of the endogenous VDCC inhibition was similar to those induced by NA and ATP. GDPbetaS, pertussis toxin (PTX), blockers for alpha-adrenoceptors and P2-purinoceptors significantly reduced the endogenous VDCC inhibition. These results suggest that VDCCs are regulated by vesicular substances in a paracrine fashion, at least by noradrenaline and ATP, through activation of alpha-adrenoceptors and P2-purinoceptors, respectively, in porcine adrenal chromaffin cells. |
2(0,0,0,2) |