Protein Information

ID 31
Name transferase
Synonyms 4' phosphopantetheinyl transferase; 4' phosphopantetheinyl transferase; AASD PPT; AASDHPPT; AASDPPT; Alpha aminoadipic semialdehyde dehydrogenase phosphopantetheinyl transferase; Aminoadipate semialdehyde dehydrogenase phosphopantetheinyl transferase; CGI 80…

Compound Information

ID 1723
Name jasmonic acid
CAS

Reference

PubMed Abstract RScore(About this table)
18455260 Munne-Bosch S, Falara V, Pateraki I, Lopez-Carbonell M, Cela J, Kanellis AK: Physiological and molecular responses of the isoprenoid biosynthetic pathway in a drought-resistant Mediterranean shrub, Cistus creticus exposed to water deficit. J Plant Physiol. 2009 Jan 30;166(2):136-45. Epub 2008 May 2.
The goal of the present research was to obtain new insights into the mechanisms underlying drought stress resistance in plants. Specifically, we evaluated changes in the expression of genes encoding enzymes involved in isoprenoid biosynthesis, together with the levels of the corresponding metabolites (chlorophylls, carotenoids, tocopherols and abscisic acid), in a drought-resistant Mediterranean shrub, Cistus creticus grown under Mediterranean field conditions. Summer drought led to reductions in the relative leaf water content (RWC) by 25%, but did not alter the maximum efficiency of PSII, indicating the absence of damage to the photosynthetic apparatus. While the expression of genes encoding C. creticus chlorophyll a oxygenase/chlorophyll b synthase (CAO) and phytoene synthase (PSY) were not affected by water deficit, the genes encoding homogentisate phytyl-transferase (HPT) and 9-cis-epoxycarotenoid dioxygenase (NCED) were induced in water-stressed (WS) plants. Drought-induced changes in gene expression were observed at early stages of drought and were strongly correlated with levels of the corresponding metabolites, with simultaneous increases in abscisic acid and alpha-tocopherol levels of up to 4-fold and 62%, respectively. Furthermore, alpha-tocopherol levels were strongly positively correlated with abscisic acid contents, but not with the levels of jasmonic acid and salicylic acid. We conclude that the abscisic acid and tocopherol biosynthetic pathway may be regulated at the transcript level in WS C. creticus plants, and that the genes encoding HPT and NCED may play a key role in the drought stress resistance of this Mediterranean shrub by modulating abscisic acid and tocopherol biosynthesis.
0(0,0,0,0)