Protein Information

ID 8
Name superoxide dismutase
Synonyms IPO B; Indophenoloxidase B; MNSOD; Manganese superoxide dismutase; Manganese containing superoxide dismutase; Mangano superoxide dismutase; Mn superoxide dismutase; Mn SOD…

Compound Information

ID 1779
Name phosphorus
CAS phosphorus

Reference

PubMed Abstract RScore(About this table)
19328518 Wang C, Zhang SH, Wang PF, Hou J, Zhang WJ, Li W, Lin ZP: The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere. 2009 Jun;75(11):1468-76. Epub 2009 Mar 27.
Zinc (Zn) is a necessary element for plants, but excess Zn can be detrimental. To investigate Zn toxicity, rapeseed (Brassica napus) seedlings were treated with 0.07-1.12 mM Zn for 7d. Inhibition of plant growth along with root damage, chlorosis and decreased chlorophyll (a and b) content in newly expanded leaves (the second and third leaves formed following cotyledons) were found under Zn stress. The Zn content increased in plants under external Zn stress, while concentrations of phosphorus, copper, iron, manganese and magnesium reduced significantly, especially in roots. Meanwhile, increased lipid peroxidation was detected biochemically and histochemically. Compared with controls, NADH oxidase and peroxidase (POD) activity increased in leaves and roots of plants under high Zn, but superoxide dismutase (SOD), catalase and ascorbate peroxidase activities decreased. The changes in glutathione S-transferase activity and in ascorbic acid, dehydroascorbate, non-protein thiols and glutathione contents were also measured under Zn stress. Isoforms of SOD and POD were separated using non-denaturing polyacrylamide gel electrophoresis and their activities were analyzed. Our results suggested that excess Zn exerts its toxicity partially through disturbing nutrient balance and inducing oxidative stress in plants. These data will be helpful for better understanding of toxicity of Zn and the adaptive mechanism in Zn non-hyperaccumulator plants.
1(0,0,0,1)