Protein Information

ID 18
Name phosphodiesterase
Synonyms CAMP specific phosphodiesterase variant PDE4A 10; CAMP specific phosphodiesterase variant TM3; CAMP specific phosphodiesterase; Cyclic AMP phosphodiesterase PDE4A11; Cyclic AMP specific phosphodiesterase HSPDE4A10; DPDE 2; DPDE2; PDE 4…

Compound Information

ID 1779
Name phosphorus
CAS phosphorus

Reference

PubMed Abstract RScore(About this table)
20121060 Liao RZ, Yu JG, Himo F: Reaction mechanism of the trinuclear zinc enzyme phospholipase C: a density functional theory study. J Phys Chem B. 2010 Feb 25;114(7):2533-40.
Phosphatidylcholine-preferring phospholipase C is a trinuclear zinc-dependent phosphodiesterase, catalyzing the hydrolysis of choline phospholipids. In the present study, density functional theory is used to investigate the reaction mechanism of this enzyme. Two possible mechanistic scenarios were considered with a model of the active site designed on the basis of the high resolution X-ray crystal structure of the native enzyme. The calculations show that a Zn1 and Zn3 bridging hydroxide rather than a Zn1 coordinated water molecule performs the nucleophilic attack on the phosphorus center. Simultaneously, Zn2 activates a water molecule to protonate the leaving group. In the following step, the newly generated Zn2 bound hydroxide makes the reverse attack, resulting in the regeneration of the bridging hydroxide. The first step is calculated to be rate-limiting with a barrier of 17.3 kcal/mol, in good agreement with experimental kinetic studies. The zinc ions are suggested to orient the substrate for nucleophilic attack and provide electrostatic stabilization to the dianionic penta-coordinated trigonal bipyramidal transition states, thereby lowering the barrier.
1(0,0,0,1)