7541281 |
Downie DL, Hope AG, Belelli D, Lambert JJ, Peters JA, Bentley KR, Steward LJ, Chen CY, Barnes NM: The interaction of trichloroethanol with murine recombinant 5-HT3 receptors. Br J Pharmacol. 1995 Apr;114(8):1641-51. 1. The effects of ethanol, chloral hydrate and trichloroethanol upon the 5-HT3 receptor have been investigated by use of electrophysiological techniques applied to recombinant 5-HT3 receptor subunits (5-HT3R-A or 5-HT3R-As) expressed in Xenopus laevis oocytes. Additionally, the influence of trichloroethanol upon the specific binding of [3H]-granisetron to membrane preparations of HEK 293 cells stably transfected with the murine 5-HT3R-As subunit and 5-HT3 receptors endogenous to NG 108-15 cell membranes was assessed. 2. Ethanol (30-300 mM), chloral hydrate (1-30 mM) and trichloroethanol (0.3-10 mM), produced a reversible, concentration-dependent, enhancement of 5-HT-mediated currents recorded from oocytes expressing either the 5-HT3R-A, or the 5-HT3R-As subunit. 3. Trichloroethanol (5 mM) produced a parallel leftward shift of the 5-HT concentration-response curve, reducing the EC50 for 5-HT from 1 +/- 0.04 microM (n = 4) to 0.5 +/- 0.01 microM (n = 4) for oocytes expressing the 5-HT3R-A. A similar shift, from 2.1 +/- 0.05 microM (n = 11) to 1.3 +/- 0.1 microM (n = 4), was observed in oocytes expressing the 5-HT3R-As subunit. Trichloroethanol (5 mM) had little or no effect upon the maximum current produced by 5-HT for either recombinant receptor. 4. Trichloroethanol (5 mM) similarly reduced the EC50 for 2-methyl-5-HT from 13 +/- 0.4 microM (n = 4) to 4.6 +/- 0.2 microM (n = 4) and from 15 +/- 2 microM (n = 4) to 5 +/- 0.4 microM (n = 4) for oocytes expressing the 5-HT3R-A and 5-HT3R-As subunit respectively. Additionally, trichloroethanol (5 mM) produced a clear enhancement of the maximal current to 2-methyl-5-HT (expressed as a percentage of the maximal current to 5-HT) from 63 +/- 0.7% (n = 4) to 101 +/- 1.6% (n = 4) and from 9 +/- 0.2% (n = 4) to 74 +/- 2% (n = 4) for oocytes expressing the 5-HT3R-A and 5-HT3R-As subunit respectively. 5. Trichloroethanol (2.5 mM) had no effect upon the Kd, or Bmax, of specific [3H]-granisetron binding to membrane homogenates of NG 108-15 cells or HEK 293 cells. Similarly, competition for [3H]-granisetron binding by the 5-HT3 receptor antagonists ondansetron and tropisetron was unaffected. However, competition for [3H]-granisetron binding by the 5-HT3 receptor agonists, 5-HT, 2-methyl-5-HT and phenylbiguanide was enhanced by trichloroethanol (2.5 mM). 6 Unexpectedly, the competition for [3H]-granisetron binding by the 5-HT3 receptor antagonist,quipazine, was enhanced by 2.5 mM trichloroethanol. Quipazine (1 nM-0.3 microM) antagonized 5-HT evoked currents recorded from oocytes expressing the 5-HT3R-A subunit with an IC50 of 18 +/- 3 nM (n = 4). Additionally, quipazine (30 nM-0.3 microM) produced a small inward current which was greatly enhanced by 5 mM trichloroethanol and antagonized by 100 nM ondansetron. Collectively, these observations suggest that quipazine may act as a partial agonist.7. The demonstration that a recombinant homo-oligomeric receptor, expressed in a foreign membrane,retains a sensitivity to alcohols, together with the sequencing of alcohol-insensitive 5-HT3 receptor subunits, may lead to a better definition of the alcohol binding site (s). |
12(0,0,0,12) |