Protein Information

ID 1162
Name ERbeta
Synonyms ER beta; ERb; ERbeta; ESR beta; ESR 2; ESR2; ESRB; ESRbeta…

Compound Information

ID 117
Name DDT
CAS 1,1′-(2,2,2-trichloroethylidene)bis[4-chlorobenzene]

Reference

PubMed Abstract RScore(About this table)
20064516 Katsu Y, Taniguchi E, Urushitani H, Miyagawa S, Takase M, Kubokawa K, Tooi O, Oka T, Santo N, Myburgh J, Matsuno A, Iguchi T: Molecular cloning and characterization of ligand- and species-specificity of amphibian estrogen receptors. Gen Comp Endocrinol. 2010 Jan 12.
Estrogens are essential for normal reproductive activity in both males and females as well as for ovarian differentiation during a critical developmental stage in most vertebrates. To understand the molecular mechanisms of estrogen action and to evaluate estrogen receptor ligand interactions in amphibians, we isolated cDNAs encoding the estrogen receptors (ERalpha and ERbeta) from the Japanese firebelly newt (Cynops pyrrhogaster), Tokyo salamander (Hynobius tokyoensis), axolotl (Ambystoma mexicanum), and Raucous toad (Bufo rangeri). Full-length amphibian ER cDNAs were obtained using 5' and 3' rapid amplification of cDNA ends. The predicted amino acid sequences of these amphibian ERs showed a high degree of amino acid sequence identity (over 70%) to each other. We analyzed the relationships of these amphibian ER sequences to other vertebrate ER sequences by constructing a phylogenetic tree. We verified that these were bona fide estrogen receptors using receptor dependent reporter gene assays. We analyzed the effects of natural estrogens, ethinylestradiol, and DDT and its metabolites on the transactivation of the four amphibian species listed above, and Xenopus tropicalis ERs and found that there were species-specific differences in the sensitivity of these ERs to hormones and environmental chemicals. These findings will expand our knowledge of endocrine-disrupting events in amphibians.
1(0,0,0,1)