Protein Information

ID 2586
Name 14 3 3
Synonyms 14 3 3; HS1; 14 3 3; 14 3 3 protein T cell; 14 3 3 protein tau; 14 3 3 protein theta; 14 3 3 theta; 1C5…

Compound Information

ID 1714
Name gibberellic acid
CAS (1α,2β,4aα,4bβ,10β)-2,4a,7-trihydroxy-1-methyl-8-methylenegibb-3-ene-1,10-dicarboxylic acid 1,4a-lactone

Reference

PubMed Abstract RScore(About this table)
19143991 Schoonheim PJ, Costa Pereira DD, De Boer AH: Dual role for 14-3-3 proteins and ABF transcription factors in gibberellic acid and abscisic acid signalling in barley (Hordeum vulgare) aleurone cells. Plant Cell Environ. 2009 May;32(5):439-47. Epub 2009 Jan 1.
The balance of gibberellins [gibberellic acid (GA)] and abscisic acid (ABA) is a determining factor during transition of embryogenesis and seed germination. Recently, we showed that 14-3-3 proteins are important in ABA signalling in barley aleurone cells. Using 14-3-3 RNAi constructs in the barley aleurone transient expression system, we demonstrate here that silencing of each 14-3-3 isoform suppresses GA induction of the alpha-amylase gene. 14-3-3 Proteins interact with ABA-responsive element (ABRE) binding factors HvABF1, 2 and 3, and here we show that these transcription factors also interact with the ABA-responsive kinase PKABA1, a kinase that mediates cross-talk between the GA and ABA pathway. ABF1 and ABF2 have a function in both signalling pathways as: (1) ectopic expression of wild-type ABF1 and mutant ABF2, lacking the 14-3-3 interaction domain, transactivates the ABA inducible HVA1 gene; and (2) GA induction of the alpha-amylase gene is repressed by ectopic expression of wild-type ABF1 and 2. Mutant ABF1 and 2 were still effective repressors of GA signalling. In summary, our data provide evidence that 14-3-3 proteins and members of the ABF transcription factor family have a regulatory function in the GA pathway and suggest that PKABA1 and ABF transcription factors are cross-talk intermediates in ABA and GA signalling.
10(0,0,1,5)