Protein Information

ID 473
Name aldehyde dehydrogenase (protein family or complex)
Synonyms aldehyde dehydrogenase; aldehyde dehydrogenases

Compound Information

ID 955
Name TCA
CAS 2,2,2-trichloroacetic acid

Reference

PubMed Abstract RScore(About this table)
12210539 Poon R, Nakai J, Yagminas A, Benoit F, Moir D, Chu I, Valli VE: Subchronic toxicity of chloral hydrate on rats: a drinking water study. J Appl Toxicol. 2002 Jul-Aug;22(4):227-36.
The subchronic toxicity of chloral hydrate, a disinfection byproduct, was studied in rats following 13 weeks of drinking water exposure. Male (262 +/- 10 g) and female (190 +/- 8 g) Sprague-Dawley rats, ten animals per group, were administered chloral hydrate via drinking water at 0.2, 2, 20 and 200 ppm. Control animals received distilled water only. Gross and microscopic examinations, serum chemistry, hematology, biochemical analysis, neurogenic amine analysis and serum trichloroacetic acid (TCA) analysis were performed at the end of the treatment period. Bronchoalveolar fluids were collected at necropsy and urine specimens were collected at weeks 2, 6 and 12 for biochemical analysis. No treatment-related changes in food and water intakes or body weight gains were observed. There were no significant changes in the weights of major organs. Except for a mild degree of vacuolation within the myelin sheath of the optic nerves in the highest dose males, there were no notable histological changes in the tissues examined. Statistically significant treatment-related effects were biochemical in nature, with the most pronounced being increased liver catalase activity in male rats starting at 2 ppm. Liver aldehyde dehydrogenase (ALDH) was significantly depressed, whereas liver aniline hydroxylase activity was significantly elevated in both males and females receiving the highest dose. A dose-related increase in serum TCA was detected in both males and females starting at 2 ppm. An in vitro study of liver ALDH confirmed that chloral hydrate was a potent inhibitor, with an IC (50) of 8 micro M, whereas TCA was weakly inhibitory and trichloroethanol was without effect. Analysis of brain biogenic amines was conducted on a limited number (n = 5) of male rats in the control and high dose groups, and no significant treatment-related changes were detected. Taking into account the effect on the myelin sheath of male rats and the effects on liver ALDH and aniline hydroxylase of both males and females at the highest dose level, the no-observed-effect level (NOEL) was determined to be 20 ppm or 1.89 mg kg (-1) day (-1) in males and 2.53 mg kg (-1) day (-1) in females. This NOEL is ca. 1000-fold higher than the highest concentration of chloral hydrate reported in the municipal water supply.
1(0,0,0,1)