17085545 |
Pelorosso FG, Halperin AV, Palma AM, Nowak W, Errasti AE, Rothlin RP: Neutral endopeptidase up-regulation in isolated human umbilical artery: involvement in desensitization of bradykinin-induced vasoconstrictor effects. J Pharmacol Exp Ther. 2007 Feb;320(2):713-20. Epub 2006 Nov 3. Previous reports show that bradykinin B (2) receptors mediate contractile responses induced by bradykinin (BK) in human umbilical artery (HUA). However, although it has been reported that BK-induced responses can desensitize in several inflammatory models, the effects of prolonged in vitro incubation on BK-induced vasoconstriction in HUA have not been studied. In isolated HUA rings, BK-induced responses after a 5-h in vitro incubation showed a marked desensitization compared with responses at 2 h. Inhibition of either angiotensin-converting enzyme (ACE) or neutral endopeptidase (NEP), both BK-inactivating enzymes, failed to modify responses to BK at 2 h. After 5 h, ACE inhibition produced only a slight potentiation of BK-induced responses. In contrast, BK-induced vasoconstriction at 5 h was markedly potentiated by NEP inhibition. Moreover, NEP activity, measured by hydrolysis of its synthetic substrate (Z-Ala-Ala-Leu-p-nitroanilide), showed a 2.4-fold increase in 5-h incubated versus 2-h incubated tissues, which was completely reversed by cycloheximide (CHX) treatment. Furthermore, CHX significantly potentiated BK-induced responses, suggesting that NEP-mediated kininase activity increase at 5 h depends on de novo protein synthesis. In addition, under NEP inhibition, CHX treatment failed to produce an additional potentiation of BK-induced vasoconstriction. Still, NEP up-regulation was confirmed by Western blot, showing a 2.1-fold increase in immunoreactive NEP in 5-h incubated versus 2-h incubated HUA. In summary, the present study provides strong pharmacological evidence that NEP is up-regulated and plays a key role in desensitization of BK-induced vasoconstriction after prolonged in vitro incubation in HUA. Our results provide new insights into the possible mechanisms involved in BK-induced response desensitization during sustained inflammatory conditions. |
1(0,0,0,1) |