15812552 |
de Groot DJ, Timmer T, Spierings DC, Le TK, de Jong S, de Vries EG: Indomethacin-induced activation of the death receptor-mediated apoptosis pathway circumvents acquired doxorubicin resistance in SCLC cells. Br J Cancer. 2005 Apr 25;92(8):1459-66. Small-cell lung cancers (SCLCs) initially respond to chemotherapy but are often resistant at recurrence. A potentially new method to overcome resistance is to combine classical chemotherapeutic drugs with apoptosis induction via tumour necrosis factor (TNF) death receptor family members such as Fas. The doxorubicin-resistant human SCLC cell line GLC4-Adr and its parental doxorubicin-sensitive line GLC4 were used to analyse the potential of the Fas-mediated apoptotic pathway and the mitochondrial apoptotic pathway to modulate doxorubicin resistance in SCLC. Western blotting showed that all proteins necessary for death-inducing signalling complex formation and several inhibitors of apoptosis were expressed in both lines. The proapototic proteins Bid and caspase-8, however, were higher expressed in GLC4-Adr. In addition, GLC4-Adr expressed more Fas (3.1x) at the cell membrane. Both lines were resistant to anti-Fas antibody, but plus the protein synthesis inhibitor cycloheximide anti-Fas antibody induced 40% apoptosis in GLC4-Adr. Indomethacin, which targets the mitochondrial apoptotic pathway, induced apoptosis in GLC4-Adr but not in GLC4 cells. Surprisingly, in GLC4-Adr indomethacin induced caspase-8 and caspase-9 activation as well as Bid cleavage, while both caspase-8 and caspase-9 specific inhibitors blocked indomethacin-induced apoptosis. In GLC4-Adr, doxorubicin plus indomethacin resulted in elevated caspase activity and a 2.7-fold enhanced sensitivity to doxorubicin. In contrast, no effect of indomethacin on doxorubicin sensitivity was observed in GLC4. Our findings show that indomethacin increases the cytotoxic activity of doxorubicin in a doxorubicin-resistant SCLC cell line partly via the death receptor apoptosis pathway, independent of Fas. |
1(0,0,0,1) |