Protein Information

ID 4115
Name TR1
Synonyms GRIM 12; TR1; TR; KM 102 derived reductase like factor; TRXR 1; TRXR1; TXNR; TXNRD 1…

Compound Information

ID 456
Name cycloheximide
CAS

Reference

PubMed Abstract RScore(About this table)
16136269 Danforth DN, Zhu Y: Conversion of Fas-resistant to Fas-sensitive MCF-7 breast cancer cells by the synergistic interaction of interferon-gamma and all-trans retinoic acid. Breast Cancer Res Treat. 2005 Nov;94(1):81-91.
The membrane receptor Fas (Apo-1/CD95) is an important initiator of programmed cell death induced by anti-Fas antibody or Fas ligand. MCF-7 human breast cancer cells have low levels of Fas receptor (FasR) and are resistant to anti-FasR antibody mediated apoptosis, however two naturally occurring substances, interferon and all-trans retinoic acid (AT), act synergistically to enhance antiproliferative processes in these cells, suggesting this combination may also be an effective means for enhancing FasR expression. When this was studied, it was found that IFN-gamma and AT in combination acted synergistically to induce expression of FasR mRNA and FasR protein in a time-dependent and dose-dependent manner. This induction required continuous protein synthesis, and STAT1 protein, but not PKR or TR1 protein, was induced in a manner quantitatively and temporally related to FasR protein induction, and consistent with STAT1 mediation of the synergistic effect of IFN-gamma and AT on FasR expression. FasR-induced cells were resistant to stimulation of apoptosis by anti-FasR antibody, however treatment with cycloheximide rendered these cells sensitive to antibody-induced apoptosis, suggesting endogenous blockade to signaling. These cells did not express caspase 3, or FLIP (L), but strongly expressed the endogenous inhibitor of apoptosis Bcl-2, indicating a type II Fas signaling pathway. Expression of these proteins was not modulated by IFN/AT, however treatment of Fas-induced cells with Bcl-2 specific small interfering RNA (SiRNA) downregulated Bcl-2 protein expression and rendered these cells sensitive to the cytotoxic effects of anti-Fas antibody. These findings indicate that IFN-gamma+AT in combination modulate Fas signaling and provide a novel mechanism for the promotion of cell death in breast cancer cells.
0(0,0,0,0)