19180575 |
Ni L, Saeki M, Xu L, Nakahara H, Saijo M, Tanaka K, Kamisaki Y: RPAP3 interacts with Reptin to regulate UV-induced phosphorylation of H2AX and DNA damage. J Cell Biochem. 2009 Apr 1;106(5):920-8. We have previously reported that Monad, a novel WD40 repeat protein, potentiates apoptosis induced by tumor necrosis factor-alpha and cycloheximide. By affinity purification and mass spectrometry, RNA polymerase II-associated protein 3 (RPAP3) was identified as a Monad binding protein and may function with Monad as a novel modulator of apoptosis pathways. Here we report that Reptin, a highly conserved AAA + ATPase that is part of various chromatin-remodeling complexes, is also involved in the association of RPAP3 by immunoprecipitation and confocal microscopic analysis. Overexpression of RPAP3 induced HEK293 cells to death after UV-irradiation. Loss of RPAP3 by RNAi improved HeLa cell survival after UV-induced DNA damage and attenuated the phosphorylation of H2AX. Depletion of Reptin reduced cell survival and facilitated the phosphorylation on H2AX. These results suggest that RPAP3 modulates UV-induced DNA damage by regulating H2AX phosphorylation. |
1(0,0,0,1) |