Protein Information

ID 8
Name superoxide dismutase
Synonyms IPO B; Indophenoloxidase B; MNSOD; Manganese superoxide dismutase; Manganese containing superoxide dismutase; Mangano superoxide dismutase; Mn superoxide dismutase; Mn SOD…

Compound Information

ID 1084
Name paraquat
CAS 1,1′-dimethyl-4,4′-bipyridinium

Reference

PubMed Abstract RScore(About this table)
12018858 Eum WS, Choung IS, Kim AY, Lee YJ, Kang JH, Park J, Lee KS, Kwon HY, Choi SY: Transduction efficacy of Tat-Cu,Zn-superoxide dismutase is enhanced by copper ion recovery of the fusion protein. Mol Cells. 2002 Apr 30;13(2):334-40.
We previously reported that Tat-Cu,Zn-superoxide dismutase (Tat-SOD) can be directly transduced into mammalian cells across the lipid membrane barrier. To enhance the therapeutic potential of Tat-SOD for the treatment of various disorders that are related to this antioxidant enzyme, the transduction efficacy of Tat-SOD should be heightened. Therefore, we investigated whether copper ion recovery of the fusion protein could enhance the transduction potential of Tat-SOD in cultured HeLa cells. The results showed that the transduction potential of Tat-SOD was markedly enhanced by copper ions, and moderately increased by zinc ions. Compared with Tat-SOD, the Tat-SOD that recovered the copper ion (CR-Tat-SOD) achieved a significant increase in intracellular concentration and enzymatic activity. Therefore, CR-Tat-SOD was transduced into HeLa cells in a rapid saturation manner, but Tat-SOD was shown in a time-dependent manner. With the higher transduction efficacy of CR-Tat-SOD than that of Tat-SOD, the transduced CR-Tat-SOD significantly increased the viability of HeLa cells that were pretreated with paraquat, an intracellular superoxide anion generator. Although the mechanism of the enhanced transduction of Tat-SOD by copper ions is still unanswered, these results indicate that copper ions facilitate the transduction of SOD. These then significantly increase the biological effectiveness of this antioxidant enzyme.
2(0,0,0,2)