17618105 |
Guri AJ, Hontecillas R, Ferrer G, Casagran O, Wankhade U, Noble AM, Eizirik DL, Ortis F, Cnop M, Liu D, Si H, Bassaganya-Riera J: Loss of PPAR gamma in immune cells impairs the ability of abscisic acid to improve insulin sensitivity by suppressing monocyte chemoattractant protein-1 expression and macrophage infiltration into white adipose tissue. J Nutr Biochem. 2008 Apr;19(4):216-28. Epub 2007 Jul 6. Abscisic acid (ABA) is a natural phytohormone and peroxisome proliferator-activated receptor gamma (PPARgamma) agonist that significantly improves insulin sensitivity in db/db mice. Although it has become clear that obesity is associated with macrophage infiltration into white adipose tissue (WAT), the phenotype of adipose tissue macrophages (ATMs) and the mechanisms by which insulin-sensitizing compounds modulate their infiltration remain unknown. We used a loss-of-function approach to investigate whether ABA ameliorates insulin resistance through a mechanism dependent on immune cell PPARgamma. We characterized two phenotypically distinct ATM subsets in db/db mice based on their surface expression of F4/80. F4/80 (hi) ATMs were more abundant and expressed greater concentrations of chemokine receptor (CCR) 2 and CCR5 when compared to F4/80 (lo) ATMs. ABA significantly decreased CCR2 (+) F4/80 (hi) infiltration into WAT and suppressed monocyte chemoattractant protein-1 (MCP-1) expression in WAT and plasma. Furthermore, the deficiency of PPARgamma in immune cells, including macrophages, impaired the ability of ABA to suppress the infiltration of F4/80 (hi) ATMs into WAT, to repress WAT MCP-1 expression and to improve glucose tolerance. We provide molecular evidence in vivo demonstrating that ABA improves insulin sensitivity and obesity-related inflammation by inhibiting MCP-1 expression and F4/80 (hi) ATM infiltration through a PPARgamma-dependent mechanism. |
40(0,1,2,5) |