Protein Information

ID 1086
Name serine threonine protein kinases
Synonyms PKU BETA; Protein serine/threonine kinase; PKUb; PKUbeta; Protein kinase ubiquitous beta; Serine threonine protein kinase; Serine threonine protein kinase tousled like 1; TLK 1…

Compound Information

ID 1715
Name abscisic acid
CAS

Reference

PubMed Abstract RScore(About this table)
16098106 Sokolovski S, Hills A, Gay R, Garcia-Mata C, Lamattina L, Blatt MR: Protein phosphorylation is a prerequisite for intracellular Ca2+ release and ion channel control by nitric oxide and abscisic acid in guard cells. Plant J. 2005 Aug;43(4):520-9.
Recent work has indicated that nitric oxide (NO) and its synthesis are important elements of signal cascades in plant-pathogen defence, and are a prerequisite for drought and abscisic acid (ABA) responses in Arabidopsis thaliana and Vicia faba guard cells. NO regulates inward-rectifying K+ channels and Cl- channels of Vicia guard cells via intracellular Ca2+ release. However, its integration with related signals, including the actions of serine-threonine protein kinases, is less well defined. We report here that the elevation of cytosolic-free [Ca2+] ([Ca2+] i) mediated by NO in guard cells is reversibly inhibited by the broad-range protein kinase antagonists staurosporine and K252A, but not by the tyrosine kinase antagonist genistein. The effects of kinase antagonism translate directly to a loss of NO-sensitivity of the inward-rectifying K+ channels and background (Cl- channel) current, and to a parallel loss in sensitivity of the K+ channels to ABA. These results demonstrate that NO-dependent signals can be modulated through protein phosphorylation upstream of intracellular Ca2+ release, and they implicate a target for protein kinase control in ABA signalling that feeds into NO-dependent Ca2+ release.
1(0,0,0,1)