Protein Information

ID 428
Name factor is
Synonyms C3 inactivator; C3B/C4B inactivator; C3b inactivator; C3b INA; CFI; CFI protein; Complement component 3 inactivator; Complement component I…

Compound Information

ID 1715
Name abscisic acid
CAS

Reference

PubMed Abstract RScore(About this table)
19648230 Yano R, Kanno Y, Jikumaru Y, Nakabayashi K, Kamiya Y, Nambara E: CHOTTO1, a putative double APETALA2 repeat transcription factor, is involved in abscisic acid-mediated repression of gibberellin biosynthesis during seed germination in Arabidopsis. Plant Physiol. 2009 Oct;151(2):641-54. Epub 2009 Jul 31.
The phytohormones abscisic acid (ABA) and gibberellins (GAs) are the primary signals that regulate seed dormancy and germination. In this study, we investigated the role of a double APETALA2 repeat transcription factor, CHOTTO1 (CHO1), in seed dormancy, germination, and phytohormone metabolism of Arabidopsis (Arabidopsis thaliana). Wild-type seeds were dormant when freshly harvested seeds were sown, and these seeds were released from dormancy after a particular period of dry storage (after-ripening). The cho1 mutant seeds germinated easily even in a shorter period of storage than wild-type seeds. The cho1 mutants showed reduced responsiveness to ABA, whereas transgenic plants constitutively expressing CHO1 (p35SCHO1) showed an opposite phenotype. Notably, after-ripening reduced the ABA responsiveness of the wild type, cho1 mutants, and p35SCHO1 lines. Hormone profiling demonstrated that after-ripening treatment decreased the levels of ABA and salicylic acid and increased GA (4), jasmonic acid, and isopentenyl adenine when wild-type seeds were imbibed. Expression analysis showed that the transcript levels of genes for ABA and GA metabolism were altered in the wild type by after-ripening. Hormone profiling and expression analyses indicate that cho1 seeds, with a short period of storage, resembled fully after-ripened wild-type seeds. Genetic analysis showed that the cho1 mutation partially restored delayed seed germination and reduced GA biosynthesis activity in the ABA-overaccumulating cyp707a2-1 mutant background but did not restore seed germination in the GA-deficient ga1-3 mutant background. These results indicate that CHO1 acts downstream of ABA to repress GA biosynthesis during seed germination.
31(0,1,1,1)