Protein Information

ID 4343
Name eukaryotic translation initiation factor 5A
Synonyms EIF 5A; EIF5A; EIF5A1; Eukaryotic initiation factor 5A isoform 1; Eukaryotic translation initiation factor 5A; Eukaryotic translation initiation factor 5A 1; Rev binding factor; eIF 4D…

Compound Information

ID 388
Name butylamine
CAS 2-butanamine

Reference

PubMed Abstract RScore(About this table)
9396730 Tome ME, Fiser SM, Payne CM, Gerner EW: Excess putrescine accumulation inhibits the formation of modified eukaryotic initiation factor 5A (eIF-5A) and induces apoptosis. Biochem J. 1997 Dec 15;328 ( Pt 3):847-54.
DH23A cells, an alpha-difluoromethylornithine-resistant variant of the parental hepatoma tissue culture cells, express high levels of stable ornithine decarboxylase. Aberrantly high expression of ornithine decarboxylase results in a large accumulation of endogenous putrescine and increased apoptosis in DH23A cells when alpha-difluoromethylornithine is removed from the culture. Treatment of DH23A cells with exogenous putrescine in the presence of alpha-difluoromethylornithine mimics the effect of drug removal, suggesting that putrescine is a causative agent or trigger of apoptosis. Accumulation of excess intracellular putrescine inhibits the formation of hypusine in vivo, a reaction that proceeds by the transfer of the butylamine moiety of spermidine to a lysine residue in eukaryotic initiation factor 5A (eIF-5A). Treatment of DH23A cells with diaminoheptane, a competitive inhibitor of the post-translational modification of eIF-5A, causes both the suppression of eIF-5A modification in vivo and induction of apoptosis. These data support the hypothesis that rapid degradation of ornithine decarboxylase is a protective mechanism to avoid cell toxicity from putrescine accumulation. Further, these data suggest that suppression of modified eIF-5A formation is one mechanism by which cells may be induced to undergo apoptosis.
34(0,1,1,4)