Protein Information

ID 33
Name ATPase
Synonyms ATP7A; MK; ATPase; Cation transporting ATPase; ATP7A protein; ATPase Cu(2+) transporting alpha polypeptide; Copper pump 1; Copper transporting ATPase 1…

Compound Information

ID 1763
Name scilliroside
CAS

Reference

PubMed Abstract RScore(About this table)
3022811 Katgely BW, Bridges RJ, Rummel W: Inhibition of the intestinal transport of uracil by hexoses and amino acids. Biochim Biophys Acta. 1986 Nov 17;862(2):429-34.
Various hexoses and amino acids were tested as potential inhibitors of the active mucosal to serosal transport of uracil across the everted rat jejunum. Uracil transport displayed Michaelis-Menten type kinetics with a Vmax of 10.4 +/- 0.2 mumol X g-1 X h-1 and an apparent Km of 0.047 +/- 0.002 mM (means +/- S.D.). Scilliroside, an inhibitor of the basolateral (Na+ + K+)-ATPase, dose-dependently inhibited the transport of uracil consistent with the Na+ dependency of uracil transport. Thymine was a full competitive inhibitor (Ki = 0.021 +/- 0.002 mM) of uracil transport. All actively transported substances tested including L-phenylalanine, L-leucine, D-galactose, D-glucose, and 3-O-methylglucose inhibited the transport of uracil. In contrast, L-glucose and fructose, substances which are not actively transported, were without effect on uracil transport. Further studies with D-galactose indicated that it acts as a partial noncompetitive inhibitor (Ki = 6.0 +/- 1.4 mM) of uracil transport. This Ki is in good agreement with the apparent Kt (5.8 +/- 1.1 mM) for D-galactose transport. Phlorizin (0.1 mM), an inhibitor of galactose transport, blocked the inhibitory effect of galactose on uracil transport. In the ileum D-galactose had no effect on uracil transport but thymine caused the same degree of inhibition as in the jejunum. The results demonstrate that heterologous inhibition is a more general phenomenon than had previously been realized.
1(0,0,0,1)