Protein Information

ID 647
Name Lipoxygenase (protein family or complex)
Synonyms arachidonate lipoxygenase; arachidonate lipoxygenases; lipoxygenase; lipoxygenases

Compound Information

ID 314
Name copper sulfate
CAS sulfuric acid copper(2+) salt (1:1)

Reference

PubMed Abstract RScore(About this table)
1546066 Derian CK, Lewis DF: Activation of 15-lipoxygenase by low density lipoprotein in vascular endothelial cells. Prostaglandins Leukot Essent Fatty Acids. 1992 Jan;45(1):49-57.
Relationship to the oxidative modification of low density lipoprotein.. Oxidatively-modified low density lipoprotein (LDL) is thought to play a significant role in the formation of lipid-laden macrophages, the primary cellular component of atherosclerotic fatty lesions. Recently, lipoxygenases have been implicated as a major enzymatic pathway involved in rabbit endothelial cell-mediated LDL modification. We investigated the effect of LDL on porcine aortic endothelial cell (PAEC) and human umbilical vein (HUVEC) and aortic endothelial cell (HAEC) lipoxygenase activity. By thin layer chromatography, we observed that human LDL stimulated the metabolism of radiolabeled arachidonic acid to 12 + 15-hydroxyeicosatetraenoic acid (HETE) in indomethacin-treated PAEC. Furthermore, radiolabeled linoleic acid, a specific substrate for the 15-lipoxygenase, was metabolized to its respective product 13-hydroxyoctadecadienoic acid (13-HODE) in the presence of LDL. Increased product formation in both studies was inhibited by the lipoxygenase blockers nordihydroguaiaretic acid (NDGA) and RG 6866. 15-HETE was confirmed as the predominant HETE product in LDL-treated cells by high performance liquid chromatography. Both porcine- and human-derived LDL stimulated the CL release of 15-HETE from cells as determined by radioimmunoassay. Release of immunoreactive 15-HETE was inhibited by NDGA, RG 6866, and 5,8,11,14-eicosatetraynoic acid (ETYA) but not by the selective 5-lipoxygenase inhibitor RG 5901. These lipoxygenase inhibitors had similar effects on the modification of LDL. Our results suggest that the oxidative modification of LDL by endothelial cells may be mediated in part through activation of 15-lipoxygenase.
7(0,0,0,7)