19198000 |
Nishi K, Ueno M, Murakami Y, Fukunaga N, Akuta T, Kadowaki D, Watanabe H, Suenaga A, Maruyama T, Otagiri M: A site-directed mutagenesis study of drug-binding selectivity in genetic variants of human alpha (1)-acid glycoprotein. J Pharm Sci. 2009 Nov;98(11):4316-26. Human alpha (1)-acid glycoprotein (AGP), a major carrier of many basic drugs in circulation, consists of at least two genetic variants, namely A and F1*S variant. Interestingly, the variants of AGP have different drug-binding properties. The purpose of this study was to identify the amino acid residues that are responsible for the selectivity of drug binding to genetic variants of AGP using site-directed mutagenesis. First, we screened amino acid residues in the region proximal to position 100 that are involved in binding of warfarin and dipyridamole, which are F1*S-specific ligands, and of propafenone, which is an A-specific ligand, using ultrafiltration. In the F1*S variant, His97, His100, and Trp122 were involved in either warfarin- or dipyridamole-binding, while Glu92, His100, and Trp122 participated in the binding of propafenone in the A variant. Exchange of the residue at position 92 between AGP variants reversed the relative strength of propafenone binding to the two variants, but had a markedly different effect on binding of warfarin and dipyridamole. These findings indicate that the amino acid residue at position 92 plays a significant role in drug-binding selectivity in AGP variants, especially for drugs that preferentially bind to the A variant. |
2(0,0,0,2) |