Protein Information

ID 47
Name cytochrome P450 (protein family or complex)
Synonyms cytochrome P450; cytochrome P 450; CYP450; CYP 450

Compound Information

ID 1480
Name heptachlor
CAS

Reference

PubMed Abstract RScore(About this table)
11595308 Snyder MJ, Mulder EP: Environmental endocrine disruption in decapod crustacean larvae: hormone titers, cytochrome P450, and stress protein responses to heptachlor exposure. Aquat Toxicol. 2001 Nov 12;55(3-4):177-90.
A variety of enzymes and other proteins are produced by organisms in response to xenobiotic exposures. Cytochrome P450s (CYP) are one of the major phase I-type classes of detoxification enzymes found in terrestrial and aquatic organisms ranging from bacteria to vertebrates. One of the primary functions of stress proteins (HSPs) is to aid in the recovery of damaged proteins by chaperoning their refolding. These and other biomarkers of xenobiotic exposure and resulting effects have not been studied in crustacean larvae. This information is of potential importance for environmental management and risk assessment. In this work, we have given Homarus americanus larvae single 24 h exposures to the cyclodiene pesticide heptachlor, a known environmental endocrine disruptor (EDC) on different days of the 1st larval instar. We followed these larvae during the first larval stage for effects on timing of ecdysis to 2nd stage, ecdysteroid molting hormone titers, and alterations in the levels of cytochrome P450 CYP45 and HSP70 proteins. Delays in ecdysis were correlated with alterations in ecdysteroid levels. This result provides clues that this pesticide may function as an environmental endocrine disruptor in crustaceans. CYP45 and HSP70 levels were significantly elevated for several days following heptachlor exposure. The elevation in HSP70 was prolonged depending on the day of pesticide exposure and this was directly related to the increase in mortality. These results demonstrate the utility of these measurements as potential biomarkers in crustacean larval developmental toxicology and EDC effects research.
7(0,0,1,2)