Protein Information

ID 1000
Name P glycoproteins
Synonyms ABC20; MDR1; ABCB 1; ABCB1; ATP binding cassette sub family B member 1; CD243; CD243 antigen; CLCS…

Compound Information

ID 500
Name thiabendazole
CAS

Reference

PubMed Abstract RScore(About this table)
18241994 Blackhall WJ, Prichard RK, Beech RN: P-glycoprotein selection in strains of Haemonchus contortus resistant to benzimidazoles. Vet Parasitol. 2008 Mar 25;152(1-2):101-7. Epub 2007 Dec 8.
Anthelmintic resistance in parasitic nematodes of livestock is a chronic problem in many parts of the world. Benzimidazoles are effective, broad-spectrum anthelmintics that bind to and selectively depolymerise microtubules. Resistance to the benzimidazoles, however, developed quickly and is caused by genetic changes in genes encoding beta-tubulins, subunits of microtubules. In Haemonchus contortus, resistance to avermectins has been correlated with genetic changes at a gene encoding a P-glycoprotein, a cell membrane transport protein that has a very high affinity for ivermectin. The substrate specificity of P-glycoprotein is very broad, and resistance to benzimidazoles can be modulated by lectins specific for P-glycoprotein. We investigated the possibility that genetic changes in P-glycoprotein might be correlated with benzimidazole resistance in nematodes. An analysis of restriction fragment length polymorphisms of a P-glycoprotein gene from a sensitive and a cambendazole-selected strain of H. contortus, derived from the sensitive strain, showed a significant difference in allele frequencies between strains. The frequency of one allele in particular increased substantially. The same allele was also found at a high frequency in an independently derived thiabendazole-selected field isolate. We present genetic evidence of selection at a P-glycoprotein locus during selection for benzimidzole resistance in H. contortus.
6(0,0,0,6)