Protein Information

ID 88
Name Acetylcholinesterase
Synonyms ACHE; ACHE protein; AChE; ARACHE; AcChoEase; Acetylcholine acetylhydrolase; Acetylcholinesterase; Acetylcholinesterase isoform E4 E6 variant…

Compound Information

ID 222
Name malathion
CAS diethyl 2-[(dimethoxyphosphinothioyl)thio]butanedioate

Reference

PubMed Abstract RScore(About this table)
12924923 Doorn JA, Thompson CM, Christner RB, Richardson RJ: Stereoselective inactivation of Torpedo californica acetylcholinesterase by isomalathion: inhibitory reactions with (1R)- and (1S)-isomers proceed by different mechanisms. Chem Res Toxicol. 2003 Aug;16(8):958-65.
The present study was undertaken to test the hypothesis that acetylcholinesterase (AChE) inhibition by isomalathion stereoisomers proceeds with different primary leaving groups for (1R)- and (1S)-isomers. Consistent with results obtained with enzyme from other species, AChE from Torpedo californica (TcAChE) was stereoselectively inhibited by isomalathion isomers with the (1R,3R)-isomer exhibiting greater potency than (1S,3S)-isomalathion. TcAChE modified by (1R)-isomers readily reactivated in the presence of 2-pralidoxime methiodide (2-PAM), whereas enzyme inhibited by (1S)-isomalathions was intractable toward reactivation. Computer-based molecular modeling showed that the ligand positioned as the primary leaving group was diethyl thiosuccinyl for (1R)-isomers and thiomethyl for (1S)-isomalathions. Mass spectral analysis revealed that inhibition of TcAChE by (1R)-isomers resulted in an O,S-dimethyl phosphate adduct, as expected from expulsion of the diethyl thiosuccinyl ligand. In contrast, inactivation of the enzyme by (1S)-isomalathions yielded an O-methyl phosphate adduct, consistent with initial loss of thiomethyl followed by displacement of the diethyl thiosuccinyl group. The findings demonstrate that the inhibitory reactions of TcAChE with (1R)- and (1S)-isomalathions proceed by different mechanisms involving distinct primary leaving groups.
3(0,0,0,3)