Protein Information

ID 1799
Name smooth muscle actin
Synonyms ACTC; ACTC 1; ACTC1; Alpha cardiac actin; CMD1R; Smooth muscle actin; Alpha cardiac actins; Smooth muscle actins

Compound Information

ID 954
Name SMA
CAS sodium 2-chloroacetate

Reference

PubMed Abstract RScore(About this table)
19703598 Bloch K, Vanichkin A, Damshkaln LG, Lozinsky VI, Vardi P: Vascularization of wide pore agarose-gelatin cryogel scaffolds implanted subcutaneously in diabetic and non-diabetic mice. Stem Cells. 2008 Mar;26(3):789-97. Epub 2007 Dec 6.
Polymeric scaffolds have been reported to promote angiogenesis, facilitating oxygen delivery; however, little is known about the effect of diabetes on the neo-vascularization of implanted polymeric scaffolds at subcutaneous (SC) sites. In this study we compare the effect of diabetes on scaffold vascularization following SC implantation into diabetic and non-diabetic mice. Wide pore agarose cryogel scaffolds with grafted gelatin were prepared by a two-step freezing procedure and subsequent thawing. The scaffolds were implanted subcutaneously into streptozoticin-induced diabetic mice and control, non-diabetic mice. The vascularization process was estimated using histological sections, in which endothelial cells were identified by Von Willebrand factor (vWF) and CD31 antigen staining and the pericyte layer was confirmed by alpha-smooth muscle actin (alpha-SMA) visualization. Comparative analysis showed a similar thickness of fibrous capsules around the vascularized scaffolds in both diabetic and non-diabetic animals. Intensive staining for alpha-SMA indicated the formation of mature blood vessels in the surrounding fibrous capsule and tissue invading the scaffold area. No statistically significant differences in capillary density and area occupied by blood vessels were found between diabetic and non-diabetic mice. In conclusion, the present study shows no adverse effects of diabetes on new blood vessel formation in SC implanted agarose cryogel scaffolds with grafted gelatin.
1(0,0,0,1)