Protein Information

ID 106
Name monoamine oxidase
Synonyms Adrenalin oxidase; Amine oxidase; Amine oxidase [flavin containing] B; MAO B; MAOB; Monoamine oxidase; Monoamine oxidase B; Monoamine oxidase type B…

Compound Information

ID 1225
Name acrolein
CAS 2-propenal

Reference

PubMed Abstract RScore(About this table)
4055794 Silverman RB, Hiebert CK, Vazquez ML: Inactivation of monoamine oxidase by allylamine does not result in flavin attachment. J Biol Chem. 1985 Nov 25;260(27):14648-52.
[1-3H] Allylamine was synthesized by sodium boro [3H] hydride reduction of acrolein followed by direct conversion of the [1-3H] allyl alcohol to N-allylphthalimide with triphenylphosphine, diethylazodicarboxylate, and phthalimide. The protecting group was removed with hydrazine. Inactivation of beef liver mitochondrial monoamine oxidase with [1-3H] allylamine led to incorporation of 1-6 eq of inactivator/active site depending upon the length of incubation time. Inactivation and radioactivity incorporation coincided; however, after 1 eq of tritium was incorporated and 5% enzyme activity remained, additional radioactivity continued to become incorporated into the enzyme. The optical spectrum of the FAD coenzyme changed during inactivation from that of oxidized to reduced flavin. Following dialysis of the inactivated enzyme, the spectrum remained reduced, but denaturation in urea rapidly resulted in reoxidation of the flavin. Under these same denaturing conditions, 96% of the radioactivity associated with the enzyme remained bound, therefore indicating that allylamine attachment is not to the flavin coenzyme but rather to an active site amino acid residue. The adduct also was stable to base and, to a lesser degree, acid treatment. Although allylamine and N-cyclopropylbenzylamine appear to be oxidized by monoamine oxidase to give 3-(amino acid residue) propanal adducts, two different amino acids seem to be involved because of a difference in stability of the adducts. The mechanisms for inactivation of monoamine oxidase by allylamine and reactivation by benzylamine are discussed in relation to previously reported results.
3(0,0,0,3)