Protein Information

ID 280
Name voltage gated potassium channel
Synonyms HERG; Voltage gated potassium channel; ERG; ERG1; Eag homolog; Eag related protein 1; Ether a go go related gene potassium channel 1; Ether a go go related protein 1…

Compound Information

ID 332
Name 4-aminopyridine
CAS 4-pyridinamine

Reference

PubMed Abstract RScore(About this table)
11922912 Bonnet S, Dubuis E, Vandier C, Martin S, Marthan R, Savineau JP: Reversal of chronic hypoxia-induced alterations in pulmonary artery smooth muscle electromechanical coupling upon air breathing. Cardiovasc Res. 2002 Mar;53(4):1019-28.
OBJECTIVE: Chronic hypoxia (CH) induces selective pulmonary hypertension which is accompanied by structural and functional alterations in the pulmonary vasculature. Little information is available on the regression of CH-induced functional alterations of pulmonary wall. In the present work, we investigated the reversal of CH-induced pulmonary hypertension with a special focus on alterations in the electrophysiological properties of pulmonary artery smooth muscle cells (PAMCs) after normoxia recovery. METHODS: Rats were exposed to a hypobaric environment for 3 weeks (CH rats) and then subjected to a normoxic environment for 3 weeks (normoxia-recovery group) and compared with rats maintained in a normoxic environment (control rats). Electrophysiological properties of PAMCs were studied using conventional microelectrodes and patch-clamp technique. RESULTS: CH rats exhibited a threefold increase in pulmonary blood pressure compared to control rats and this increase was fully reversed following 3 weeks of normoxia. PAMCs from CH rats were depolarised (about 20 mV), had an elevated calcium concentration and exhibited a hypersensitivity to 4-aminopyridine (4-AP) of membrane potential as well as the tone of arterial rings compared with tissues from control rats. Whole cell patch-clamp recordings indicated that voltage gated potassium channel currents I (Kv) and I (K (N)) were decreased in PAMCs from CH rats with a hyper sensitivity of I (K (N)) to 4-AP. CH-induced alterations in electrophysiological properties of PAMCs were also fully reversed after 3 weeks of normoxia recovery. CONCLUSIONS: Both the increase in the pulmonary blood pressure and alterations in electrophysiological properties of PASMCs simultaneously reverse after normoxia recovery. This complete reversibility of all of the CH-induced pulmonary vascular alterations suggests that curative treatments for PAHT may now be designed aimed at targeting the very limited key factors implicated in hypoxia sensing.
1(0,0,0,1)