Protein Information

ID 282
Name voltage gated K channel (protein family or complex)
Synonyms Voltage gated K channel; Voltage gated potassium channel

Compound Information

ID 332
Name 4-aminopyridine
CAS 4-pyridinamine

Reference

PubMed Abstract RScore(About this table)
10836990 Lang R, Lee G, Liu W, Tian S, Rafi H, Orias M, Segal AS, Desir GV: KCNA10: a novel ion channel functionally related to both voltage-gated potassium and CNG cation channels. Am J Physiol Renal Physiol. 2000 Jun;278(6):F1013-21.
Our laboratory previously cloned a novel rabbit gene (Kcn1), expressed in kidney, heart, and aorta, and predicted to encode a protein with 58% amino acid identity with the K channel Shaker Kv1.3 (Yao X et al. Proc Natl Acad Sci USA 92: 11711-11715, 1995). Because Kcn1 did not express well (peak current in Xenopus laevis oocytes of 0.3 microA at +60 mV), the human homolog (KCNA10) was isolated, and its expression was optimized in oocytes. KCNA10 mediates voltage-gated K (+) currents that exhibit minimal steady-state inactivation. Ensemble currents of 5-10 microA at +40 mV were consistently recorded from injected oocytes. Channels are closed at the holding potential of -80 mV but are progressively activated by depolarizations more positive than -30 mV, with half-activation at +3.5 +/- 2.5 mV. The channel displays an unusual inhibitor profile because, in addition to being blocked by classical K channel blockers (barium tetraethylammonium and 4-aminopyridine), it is also sensitive to inhibitors of cyclic nucleotide-gated (CNG) cation channels (verapamil and pimozide). Tail-current analysis shows a reversal potential shift of 47 mV/decade change in K concentration, indicating a K-to-Na selectivity ratio of at least 15:1. The phorbol ester phorbol 12-myristate 13-acetate, an activator of protein kinase C, inhibited whole cell current by 42%. Analysis of single-channel currents reveals a conductance of approximately 11 pS. We conclude KCNA10 is a novel human voltage-gated K channel with features common to both K-selective and CNG cation channels. Given its distribution in renal blood vessels and heart, we speculate that KCNA10 may be involved in regulating the tone of renal vascular smooth muscle and may also participate in the cardiac action potential.
1(0,0,0,1)