17146969 |
Choi S, Parajuli SP, Lim GH, Kim JH, Yeum CH, Yoon PJ, Jun JY: Imipramine inhibits A-type delayed rectifier and ATP-sensitive K+ currents independent of G-protein and protein kinase C in murine proximal colonic myocytes. Arch Pharm Res. 2006 Nov;29(11):998-1005. The effects of imipramine on A-type delayed rectifier K+ currents and ATP-sensitive K+ (KATP) currents were studied in isolated murine proximal colonic myocytes using the whole-cell patch-clamp technique. Depolarizing test pulses between -80 mV and +30 mV with 10 mV increments from the holding potential of -80 mV activated voltage-dependent outward K+ currents that peaked within 50 ms followed by slow decreasing sustained currents. Early peak currents were inhibited by the application of 4-aminopyridine, whereas sustained currents were inhibited by the application of TEA. The peak amplitude of A-type delayed rectifier K+ currents was reduced by external application of imipramine. The half-inactivation potential and the half-recovery time of A-type delayed rectifier K+ currents were not changed by imipramine. With 0.1 mM ATP and 140 mM K+ in the pipette and 90 mM K+ in the bath solution and a holding potential of -80 mV, pinacidil activated inward currents; this effect was blocked by glibenclamide. Imipramine also inhibited KATP currents. The inhibitory effects of imipramine in A-type delayed rectifier K+ currents and KATP currents were not changed by guanosine 5-O-(2-thiodiphosphate) (GDPbetaS) and chelerythrine, a protein kinase C inhibitor. These results suggest that imipramine inhibits A-type delayed rectifier K+ currents and KATP currents in a manner independent of G-protein and protein kinase C. |
2(0,0,0,2) |