12425057 |
Ishaaya I, Kontsedalov S, Mazirov D, Horowitz AR: Biorational agents--mechanism and importance in IPM and IRM programs for controlling agricultural pests. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet. 2001;66(2a):363-74. Among the new approaches for controlling agricultural pests is the development of novel compounds affecting specific processes in insects such as chitin synthesis inhibitors, juvenile hormone mimics and ecdysone agonists. In addition, efforts have been made to develop compounds acting selectively on groups of insects by inhibiting or enhancing biochemical sites such as respiration (diafenthiuron), the nicotinyl acetylcholine receptors (imidacloprid and acetamiprid), the GABA receptors (avermectins), the salivary glands of sucking pests (pymetrozine) and others. Among the most recent novel insecticides with selective properties are novaluron, thiamethoxam, emamectin and spinosad. Novaluron (Rimon) is a novel chitin synthesis inhibitor that acts by both ingestion and contact. It is a powerful suppressor of lepidopteran larvae such as Spodoptera littoralis and Helicoverpa armigera (by ingestion) and of whiteflies such as Bemisia tabaci and Trialeurodes vaporariorum (by contact). Thiamethoxam (Actarn), a novel neonicotinoid acts specifically on aphids and whiteflies. Emamectin (Proclaim), an avermectin derivative acts on GABA receptor affecting diversity of insects such as mites, lepidopterans and thrips. Spinosad (Tracer) seems to act on both acetylcholine and GABA receptors affecting diversity of insect species and is considered an important agent for controlling the western flower thrips. |
3(0,0,0,3) |