Protein Information

ID 15
Name MAPK (protein family or complex)
Synonyms MAPK; mitogen activated protein kinase; mitogen activated protein kinases

Compound Information

ID 1341
Name rotenone
CAS

Reference

PubMed Abstract RScore(About this table)
17029596 Hirata Y, Meguro T, Kiuchi K: Differential effect of nerve growth factor on dopaminergic neurotoxin-induced apoptosis. J Neurochem. 2006 Oct;99(2):416-25.
Both rotenone and manganese are possible neurotoxins for a wide variety of cell and neuronal types including dopaminergic neurons and induce apoptosis in various cells. Neurotrophic factors have the potential for therapeutic development when used to prevent Parkinson's disease. In this paper, we focused on the differences between rotenone and manganese as toxins, and characterized the influence of neurotrophic factors on toxin-induced apoptosis in PC12 cells. There were distinct differences in intracellular mechanisms between rotenone- and manganese-induced apoptosis such as the production of reactive oxygen species, the response to antioxidants, and the activation of the c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Nerve growth factor (NGF) almost completely prevented rotenone-induced but not manganese-induced caspase activation and DNA fragmentation. The differential effect of NGF was found to be mainly due to the down-regulation of the Trk tyrosine kinase receptor by manganese but not by rotenone. Prevention of rotenone-induced apoptosis by NGF was attenuated by the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor, LY294002, but not MAPK kinase (MEK) inhibitors, PD98059 or U0126. These results demonstrate that the potential neurotoxins for dopaminergic cells exert their toxic effect by activation of different signaling pathways of apoptosis and that NGF prevents rotenone-induced apoptosis through the activation of the PI 3-kinase pathway not MAPK pathway.
31(0,1,1,1)