Protein Information

ID 27
Name cytochrome c
Synonyms CYC; CYCS; Cytochrome C; HCS; Cytochrome Cs

Compound Information

ID 1341
Name rotenone
CAS

Reference

PubMed Abstract RScore(About this table)
2038500 Fry M, Beesley JE: Mitochondria of mammalian Plasmodium spp. Parasitology. 1991 Feb;102 Pt 1:17-26.
Highly purified mitochondrial fractions have been isolated from the intraerythrocytic stages of two mammalian Plasmodium spp., Plasmodium yoelii of rodents and Plasmodium falciparum of man. Mitochondria of the former parasite are cristate whereas those of the latter are essentially acristate. Isolated mitochondria from both parasite species were heterogeneous with respect to size, shape, density of matrix staining and extent of internal structure. Respiratory assay, by reduction of exogenous cytochrome c, showed NADH, alpha-glycerophosphate and succinate to be the substrates with the greatest potential for metabolism. Additionally, proline, dihydroorotate and glutamate (P. falciparum only) were oxidized at low rates. A number of NAD (+)-linked substrates were not utilized. The NADH-dependent reduction of cytochrome c was insensitive to rotenone and antimycin A. Fumarate inhibited the NADH-dependent reduction of cytochrome c and stimulated the oxidation of NADH, suggestive of an NADH-fumarate reductase pathway. Oxidation of either alpha-glycerophosphate or succinate was fully inhibited by standard mitochondrial electron transport inhibitors, including a number of Complex III inhibitors, although the concentrations required of such inhibitors (notably myxothiazol) were relatively high compared to mammalian mitochondria. Dithionite-reduced minus oxidized difference spectra indicated the presence of cytochromes aa3, b, c and c1 in mitochondria of both parasite species, but at a higher cytochrome to protein ratio in P. yoelii. Freshly isolated mitochondria from either species exhibited only low respiratory control ratios with alpha-glycerophosphate or succinate as substrates. The apparent absence of a respiratory chain 'Site I' in such mitochondria may mean that NADH-fumarate reductase serves to reoxidize mitochondrial NADH.
83(1,1,1,3)