Protein Information

ID 688
Name NADH dehydrogenase
Synonyms B14.5b; NADH dehydrogenase; CI B14.5b; Complex I B14.5b; HLC 2; HLC2; NADH dehydrogenase [ubiquinone] 1 subunit C2; NADH ubiquinone oxidoreductase subunit B14.5b…

Compound Information

ID 1341
Name rotenone
CAS

Reference

PubMed Abstract RScore(About this table)
15526465 Sharova IV, Vekshin NL: [Rotenone-insensitive NADH oxydation in mitochondrial suspension occurs by NADH dehydrogenase of respiratory chain fragments]. Biofizika. 2004 Sep-Oct;49(5):814-21.
Two types of NADH oxidation, rotenone-sensitive and rotenone-insensitive, in suspension of beef heart mitochondria were investigated by the spectrophotometric method. The oxidation of the added NADH by mitochondria in hypotonic media occurs only through the NADH dehydrogenase of the respiratory chain, since it was totally blocked by rotenone or amytal (and also by antimycin A or azide), but the ferricyanide-activated NADH oxidation was insensitive to these inhibitors. The insensitivity of the NADH dehydrogenase to rotenone appears to be due to a shunt of the electron transfer to ferricyanide without involving of ubiquinone. Both types of the oxydation occur through one and the same enzyme, which exists in two states. The evidence in favour of this is that NAD+ and DTT slightly influence the first type of oxidation but strongly inhibit the second one. The ferricyanide-activated NADH oxidation takes place in NADH dehydrogenase fragments released from mitochondria. Low Ds-Na concentrations block the respiratory chain NADH oxidation but increase the velocity of the ferricyanide-dependent oxidation. Probably, the increase is the result of the detergent-induced additional releasing of the fragments. The express-method for the preparation of the initially purified fraction with a high yield of detergent-containing fragments of the active enzyme is described.
69(0,2,3,4)