Protein Information

ID 688
Name NADH dehydrogenase
Synonyms B14.5b; NADH dehydrogenase; CI B14.5b; Complex I B14.5b; HLC 2; HLC2; NADH dehydrogenase [ubiquinone] 1 subunit C2; NADH ubiquinone oxidoreductase subunit B14.5b…

Compound Information

ID 1341
Name rotenone
CAS

Reference

PubMed Abstract RScore(About this table)
6667089 McEwan AG, Ferguson SJ, Jackson JB: Electron flow to dimethylsulphoxide or trimethylamine-N-oxide generates a membrane potential in Rhodopseudomonas capsulata. Arch Microbiol. 1983 Dec;136(4):300-5.
Under dark and essentially anaerobic conditions electron flow to either dimethylsulphoxide or trimethylamine-N-oxide in cells of Rhodopseudomonas capsulata has been shown to generate a membrane potential. This conclusion is based on the observation of a red shift in the carotenoid absorption band which is a well characterised indicator of membrane potential in this bacterium. The magnitude of the dimethylsulphoxide- or trimethylamine-N-oxide-dependent membrane potential was reduced either by a protonophore uncoupler of oxidative phosphorylation or synergistically by a combination of a protonophore plus rotenone, an inhibitor of electron flow from NADH dehydrogenase. These findings, together with the observation that venturicidin, an inhibitor of the proton translocating ATPase, did not reduce the membrane potential, show that electron flow to dimethylsulphoxide or trimethylamine-N-oxide is coupled to proton translocation. Thus contrary to some previous proposals dark and anaerobic growth of Rps. capsulata in the presence of dimethylsulphoxide or trimethylamine-N-oxide cannot be regarded as purely fermentative.
1(0,0,0,1)