Protein Information

ID 688
Name NADH dehydrogenase
Synonyms B14.5b; NADH dehydrogenase; CI B14.5b; Complex I B14.5b; HLC 2; HLC2; NADH dehydrogenase [ubiquinone] 1 subunit C2; NADH ubiquinone oxidoreductase subunit B14.5b…

Compound Information

ID 1341
Name rotenone
CAS

Reference

PubMed Abstract RScore(About this table)
37082 Meijer EM, van der Zwaan JW, Wever R, Stouthamer AH: Anaerobic respiration and energy conservation in Paracoccus denitrificans. Eur J Biochem. 1979 May 2;96(1):69-76.
Functioning of iron-sulfur centers and the uncoupling effect of nitrite.. 1. Electron paramagnetic resonance spectra at 8-60 K of NADH-reduced membrane particles prepared from Paracoccus denitrificans grown anaerobically with nitrate as terminal electron acceptor show the presence of iron-sulfur centers 1-4 in the NADH-ubiquinone segment of the respiratory chain. In addition resonance lines at g = 2.058, g = 1.953 and g = 1.88 are detectable in the spectra of succinate-reduced membranes at 15 K, which are attributed to the iron-sulfur-containing nitrate reductase. 2. Sulphate-limited growth under anaerobic conditions does not affect the iron-sulfur pattern of NADH dehydrogenase or nitrate reductase. Furthermore respiratory chain-linked electron transport and its inhibition by rotenone are not influenced. These results contrast those observed for sulphate-limited growth of P. denitrificans under aerobic conditions [Eur. J. Biochem. (1977) 81, 267-275]. 3. Proton translocation studies of whole cells indicate that nitrite increases the proton conductance of the cytoplasmic membrane, resulting in a collapse of the proton gradient across the membrane. Nitrite accumulates under anaerobic growth conditions with nitrate as terminal electron acceptor; the extent of accumulation depends on the specific growth conditions. Thus the low efficiencies of respiratory chain-linked energy conservation observed during nitrate respiration [Arch. Microbiol. (1977) 112, 17-23] can be explained by the uncoupling action of nitrite.
0(0,0,0,0)