Protein Information

ID 81
Name protein kinase C (protein family or complex)
Synonyms Protein kinase C; PKC

Compound Information

ID 1341
Name rotenone
CAS

Reference

PubMed Abstract RScore(About this table)
15567152 Tsubouchi H, Inoguchi T, Inuo M, Kakimoto M, Sonta T, Sonoda N, Sasaki S, Kobayashi K, Sumimoto H, Nawata H: Sulfonylurea as well as elevated glucose levels stimulate reactive oxygen species production in the pancreatic beta-cell line, MIN6-a role of NAD (P) H oxidase in beta-cells. Biochem Biophys Res Commun. 2005 Jan 7;326(1):60-5.
Increased oxidative stress may play a key role in the progressive deterioration of pancreatic beta-cells and the development of diabetes. However, the underlying mechanism is not well understood. Exposure of pancreatic beta-cell line, MIN6 cells, to elevated glucose level for 2h induced an increase in reactive oxygen species (ROS) production, as evaluated by the staining of 2',7'-dichlorofluorescein diacetate. This effect was completely blocked by NAD (P) H oxidase inhibitor (diphenylene iodonium) and protein kinase C (PKC) inhibitor (calphostin C), but not affected by other flavoprotein inhibitors (rotenone, oxypurinol, or l-N-monomethyl arginine). Glibenclamide also stimulated ROS production in a dose-dependent manner. This effect was again blocked by diphenylene iodonium and calphostin C. In conclusion, insulin secretagogues, both glibenclamide and elevated glucose level, stimulated ROS production in beta-cells through a PKC-dependent activation of NAD (P) H oxidase. This mechanism may be a novel therapeutic target for preventing the progression of beta-cell deterioration.
0(0,0,0,0)