Protein Information

ID 177
Name caspase 9
Synonyms APAF 3; APAF3; Apoptotic protease MCH6; Apoptotic protease Mch 6; Apoptotic protease activating factor 3; CASP 9; CASP9; CASPASE 9c…

Compound Information

ID 1341
Name rotenone
CAS

Reference

PubMed Abstract RScore(About this table)
15659217 Li J, Spletter ML, Johnson DA, Wright LS, Svendsen CN, Johnson JA: Rotenone-induced caspase 9/3-independent and -dependent cell death in undifferentiated and differentiated human neural stem cells. J Neurochem. 2005 Feb;92(3):462-76.
We used human neural stem cells (hNSCs) and their differentiated cultures as a model system to evaluate the mechanism (s) involved in rotenone (RO)- and camptothecin (CA)-induced cytotoxicity. Results from ultrastructural damage and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining indicated that RO-induced cytotoxicity resembled CA-induced apoptosis more than H (2) O (2)-induced necrosis. However, unlike CA-induced, caspase 9/3-dependent apoptosis, there was no increased activity in caspase 9, caspase 3 or poly (ADP-ribose) polymerase (PARP) cleavage in RO-induced cytotoxicity, in spite of time-dependent release of cytochrome c and apoptosis-inducing factor (AIF) following mitochondrial membrane depolarization and a significant increase in reactive oxygen species generation. Equal doses of RO and CA used in hNSCs induced caspase 9/3-dependent apoptosis in differentiated cultures. Time-dependent ATP depletion occurred earlier and to a greater extent in RO-treated hNSCs than in CA-treated hNSCs, or differentiated cultures treated with RO or CA. In conclusion, these results represent a unique ultrastructural and molecular characterization of RO- and CA-induced cytotoxicity in hNSCs and their differentiated cultures. Intracellular ATP levels may play an important role in determining whether neural progenitors or their differentiated cells follow a caspase 9/3-dependent or -independent pathway in response to acute insults from neuronal toxicants.
8(0,0,1,3)