Protein Information

ID 2328
Name citrate synthase
Synonyms CS; Citrate synthase; Citrate synthase mitochondrial; Citrate synthases; Citrate synthase mitochondrials

Compound Information

ID 1341
Name rotenone
CAS

Reference

PubMed Abstract RScore(About this table)
11804876 Matecki S, Py G, Lambert K, Peyreigne C, Mercier J, Prefaut C, Ramonatxo M: Effect of prolonged undernutrition on rat diaphragm mitochondrial respiration. Am J Respir Cell Mol Biol. 2002 Feb;26(2):239-45.
Previous studies have shown that undernutrition induces an impairment of the respiratory muscle function in patients with chronic lung disease. To explain this, we hypothesized that undernutrition could decrease oxidative metabolism in the diaphragm. We therefore examined the effect of prolonged undernutrition on diaphragm mitochondrial oxygen uptake with pyruvate and palmitate as substrates in adult rats. Ten rats served as controls (CTL). Ten nutritionally deprived rats (ND) received 40% of their estimated daily nutrition. Five weeks of undernutrition induced a 33% decrease in state 3 respiration with pyruvate plus malate as substrate (993 +/- 171 versus 1488 +/- 167 nmol atomic O/mg/min, P < 0.01) and a 39% decrease with palmitate plus malate (516 +/- 89 versus 850 +/- 165 nmol atomic O/mg/min, P < 0.05). With succinate plus rotenone, there was no significant difference in the respiratory rate between groups. In the ND group, we found a significant decrease in citrate synthase activity (P < 0.01), and also in reduced nicotinamine adenine dinucleotide (NADH) dehydrogenase activity (P < 0.05), which cannot alone induce such a state 3 respiratory decrease. This showed that undernutrition in rat diaphragm does not induce an alteration in protein complexes I, II, III, and IV, or the F complex containing the mitochondrial ATPase of the electron transport chain. In conclusion, the main result of this study was that prolonged undernutrition induced a decrease in mitochondrial respiration secondary to a significant reduction in NADH generation by the Krebs cycle, which may affect respiratory muscle function with implications for patient care.
1(0,0,0,1)