Protein Information

ID 18
Name phosphodiesterase
Synonyms CAMP specific phosphodiesterase variant PDE4A 10; CAMP specific phosphodiesterase variant TM3; CAMP specific phosphodiesterase; Cyclic AMP phosphodiesterase PDE4A11; Cyclic AMP specific phosphodiesterase HSPDE4A10; DPDE 2; DPDE2; PDE 4…

Compound Information

ID 1341
Name rotenone
CAS

Reference

PubMed Abstract RScore(About this table)
17643412 Choi JH, Kim DH, Yun IJ, Chang JH, Chun BG, Choi SH: Zaprinast inhibits hydrogen peroxide-induced lysosomal destabilization and cell death in astrocytes. Eur J Pharmacol. 2007 Oct 1;571(2-3):106-15. Epub 2007 Jul 4.
The lysosomal destabilization that precedes mitochondrial apoptotic changes is an important step in cell death, particularly in oxidative cell death. This study describes the novel pharmacological effects of zaprinast, a cGMP-elevating phosphodiesterase inhibitor, on the inhibition of oxidative cell death in astrocyte cultures. H2O2-induced oxidative cytotoxicity was measured grossly by monitoring lactate dehydrogenase (LDH) release, and was found to be associated with lysosomal acridine orange relocation, lysosomal cathepsin D release into cytosol, and reduced mitochondrial potentials. Moreover, zaprinast (100 microM) inhibited all of these cytotoxic phenomena. In addition, H2O2-induced LDH release was not inhibited by 8-pCPT-cGMP, and the inhibition of this release by zaprinast was unaffected by Rp-8-pCPT-cGMP, a protein kinase G inhibitor. Zaprinast was found to inhibit sphingosine-induced lysosomal acridine orange relocation and the induced decrease in mitochondrial potential, but zaprinast had no effect on rotenone-induced mitochondrial collapse, which was not associated with lysosomal destabilization. However, zaprinast did not inhibit the cellular increase of reactive oxygen species induced by H2O2, which suggests that its protective mechanism differs from that of desferrioxamine, which does inhibit such cellular increase of oxygen free radicals. We suggest that the novel protective effect of zaprinast on H2O2-induced oxidative cell death is primarily associated with its inhibition of lysosomal destabilization.
1(0,0,0,1)