Protein Information

ID 33
Name ATPase
Synonyms ATP7A; MK; ATPase; Cation transporting ATPase; ATP7A protein; ATPase Cu(2+) transporting alpha polypeptide; Copper pump 1; Copper transporting ATPase 1…

Compound Information

ID 1341
Name rotenone
CAS

Reference

PubMed Abstract RScore(About this table)
2833420 Mitsunaga K, Fujino Y, Yasumasu I: Distributions of H+,K+-ATPase and Cl-,HCO3 (-)-ATPase in micromere-derived cells of sea urchin embryos. Differentiation. 1987;35(3):190-6.
In cultured cells derived from isolated micromeres of sea urchin eggs, H+,K+-ATPase activity, which became detectable simultaneously with the initiation of spicule formation, was localized in the plasma membrane and the microsome fractions. Activities of marker enzymes for plasma membrane, 5'-nucleotidase, Na+,K+-ATPase, and adenylate cyclase, were found to be high in the plasma membrane fraction. Considerable activity of rotenone-insensitive NADPH-cytochrome c reductase, a marker enzyme for microsome, was detectable in the microsome fraction. These fractions exhibited barely any appreciable activity of markers for the other organellae. H+,K+-ATPase in plasma membrane probably mediates H+ release from the cells, in which H+ is produced in overall reaction to form CaCO3, the main component of spicules, from Ca2+, CO2 and H2O. Cl-,HCO3 (-)-ATPase activity was also found in these two fractions before and after the initiation of spicule formation. After initiation, the skeletal vacuole fraction was obtained from subcellular structures containing spicules. Considerable activity of Cl-,HCO3 (-)-ATPase was observed in this fraction, which exhibited a weak activity of UDP-galactose: N-acetylglucosamine galactosyltransferase, a marker enzyme for Golgi body. Cl-,HCO3 (-)-ATPase in the skeletal vacuole membrane probably mediates HCO3- transport into the vacuoles to supply HCO3- for spicule formation.
7(0,0,0,7)