Protein Information

ID 33
Name ATPase
Synonyms ATP7A; MK; ATPase; Cation transporting ATPase; ATP7A protein; ATPase Cu(2+) transporting alpha polypeptide; Copper pump 1; Copper transporting ATPase 1…

Compound Information

ID 1341
Name rotenone
CAS

Reference

PubMed Abstract RScore(About this table)
2943316 Kitagawa T, Akamatsu Y: Control of membrane permeability by external ATP in mammalian cells: isolation of an ATP-resistant variant from Chinese hamster ovary cells. Biochim Biophys Acta. 1986 Aug 21;860(2):185-93.
External ATP causes a great increase in the passive permeability of the plasma membrane for phosphorylated metabolites and other small molecules in cultured mammalian cells. We previously demonstrated that in CHO-K1 cells an ATP-dependent permeability change was induced in the presence of a mitochondrial inhibitor (KCN or rotenone), a cytoskeleton-attacking agent (vinblastine) and a calmodulin antagonist (trifluoperazine). These permeability changes were reversible but long exposure, for 30-60 min, to ATP together with a mitochondrial inhibitor significantly reduced the cell viability of the treated cells. Since this cell lysis was shown to be due to the ATP-dependent permeability change, we could isolate several clones resistant to the action of the external ATP from CHO-K1 cells after repeated treatment with ATP and rotenone. In 9.1 cells, one of the isolated clones, little or no ATP-dependent permeability change was observed in the presence of either a mitochondrial inhibitor, vinblastine or trifluoperazine. This CHO variant could be specifically resistant as to the change in membrane permeability induced by external ATP, since the permeabilities for the 2-deoxyglucose and drugs used in the present studies were similar to those in the case of the parent cells. These results suggest that a specific defect or alteration in the plasma membrane is involved in the ATP-dependent permeability change. It is also reported that Mg2+-dependent ATPase activity was found on the cell surface of both CHO-K1 and 9.1 cells, and this activity was shown to be not involved in the permeability change controlled by external ATP.
0(0,0,0,0)