12952965 |
Grether-Beck S, Felsner I, Brenden H, Krutmann J: Mitochondrial cytochrome c release mediates ceramide-induced activator protein 2 activation and gene expression in keratinocytes. J Biol Chem. 2003 Nov 28;278(48):47498-507. Epub 2003 Sep 2. The intracellular signaling pathway (s) through which second messenger ceramides induce gene expression in human cells has not yet been characterized. In the present study, ceramide-induced expression of intercellular adhesion molecule-1 (ICAM-1), which requires activation of transcription factor activator protein 2 (AP-2), was found to be mediated through a mitochondrial pathway. Inhibitors of mitochondrial electron transport chain (e.g. rotenone, thenoyltrifluoroacetone, and antimycin A) reduced ceramide-induced ICAM-1 expression. Stimulation of human keratinocytes with cell-permeant ceramides at concentrations that did not induce apoptosis (no activation of caspases 3, 8, and 9 and no nucleosomal fragmentation) but caused AP-2 activation and ICAM-1 induction released cytochrome c (cyt c) from mitochondria into the cytoplasm of cells. This cyt c release was an indispensable prerequisite for effective ceramide signaling, because its inhibition by modulating the mitochondrial megachannel with bonkrekic acid or carboxyatractyloside prevented ceramide-induced AP-2 activation and ICAM-1 expression. Analysis of the interaction between cyt c and AP-2 revealed that cyt c oxidized AP-2 and that this redox regulation greatly enhanced the DNA binding capacity of AP-2. Mitochondria thus have a previously unrecognized function in signaling ceramide-induced transcription factor activation and gene regulation. |
4(0,0,0,4) |