Protein Information

ID 2708
Name receptor activator of nuclear factor kappaB
Synonyms CD265; PDB 2; PDB2; CD265 antigen; ODFR; OFE; Osteoclast differentiation factor receptor; RANK…

Compound Information

ID 1341
Name rotenone
CAS

Reference

PubMed Abstract RScore(About this table)
17982276 Kim JM, Jeong D, Kang HK, Jung SY, Kang SS, Min BM: Osteoclast precursors display dynamic metabolic shifts toward accelerated glucose metabolism at an early stage of RANKL-stimulated osteoclast differentiation. Cell Physiol Biochem. 2007;20(6):935-46.
Mature osteoclasts have an increased citric acid cycle and mitochondrial respiration to generate high ATP production and ultimately lead to bone resorption. However, changes in metabolic pathways during osteoclast differentiation have not been fully illustrated. We report that glycolysis and oxidative phosphorylation characterized by glucose and oxygen consumption as well as lactate production were increased during receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclastogenesis from RAW264.7 and bone marrow-derived macrophage cells. Cell proliferation and differentiation varied according to glucose concentrations (0 to 100 mM). Maximal cell growth occurred at 20 mM glucose concentration and differentiation occurred at 5 mM concentration. Despite the similar growth rates exhibited when cultured cells were exposed to either 5 mM or 40 mM glucose, their differentiation was markedly decreased in high glucose concentrations. This finding suggests the possibility that osteoclastogenesis could be regulated by changes in metabolic substrate concentrations. To further address the effect of metabolic shift on osteoclastogenesis, we exposed cultured cells to pyruvate, which is capable of promoting mitochondrial respiration. Treatment of pyruvate synergistically increased osteoclastogenesis through the activation of RANKL-stimulated signals (ERK and JNK). We also found that osteoclastogenesis was retarded by blocking ATP production with either the inhibitors of mitochondrial complexes, such as rotenone and antimycin A, or the inhibitor of ATP synthase, oligomycin. Taken together, these results indicate that glucose metabolism during osteoclast differentiation is accelerated and that a metabolic shift towards mitochondrial respiration allows high ATP production and induces enhanced osteoclast differentiation.
1(0,0,0,1)