19664596 |
Ota S, Horigome K, Ishii T, Nakai M, Hayashi K, Kawamura T, Kishino A, Taiji M, Kimura T: Metformin suppresses glucose-6-phosphatase expression by a complex I inhibition and AMPK activation-independent mechanism. Biochem Biophys Res Commun. 2009 Oct 16;388(2):311-6. Epub 2009 Aug 5. Metformin is widely used as a hypoglycemic agent for the treatment of type 2 diabetes. Both metformin and rotenone, an inhibitor of respiratory chain complex I, suppressed glucose-6-phosphatase (G6pc), a rate limiting enzyme of liver glucose production, mRNA expression in a rat hepatoma cell line accompanied by a reduction of intracellular ATP concentration and an activation of AMP-activated protein kinase (AMPK). When yeast NADH-quinone oxidoreductase 1 (NDI1) gene was introduced into the cells, neither inhibition of ATP synthesis nor activation of AMPK was induced by these agents. Interestingly, in contrast to rotenone treatment, G6pc mRNA down-regulation was observed in the NDI1 expressing cells after metformin treatment. Since NDI1 can functionally complement the complex I under the presence of metformin or rotenone, our results indicate that metformin induces down-regulation of G6pc expression through an inhibition of complex I and an activation of AMPK-independent mechanism. |
33(0,1,1,3) |