Protein Information

ID 351
Name guanylate cyclase
Synonyms AMDM; Natriuretic peptide receptor; ANP B; ANPRB; Atrial natriuretic peptide B type receptor; Atrial natriuretic peptide receptor B; Atrial natriuretic peptide receptor B precursor (ANP B) (ANPRB) (GC B) (Guanylate cyclase B); Atrionatriuretic peptide receptor B…

Compound Information

ID 332
Name 4-aminopyridine
CAS 4-pyridinamine

Reference

PubMed Abstract RScore(About this table)
11284450 Tanaka Y, Mitani A, Igarashi T, Someya S, Otsuka K, Imai T, Yamaki F, Tanaka H, Saitoh M, Nakazawa T, Noguchi K, Hashimoto K, Shigenobu K: HNS-32, a novel azulene-1-carboxamidine derivative, inhibits nifedipine-sensitive and -insensitive contraction of the isolated rabbit aorta. Naunyn Schmiedebergs Arch Pharmacol. 2001 Mar;363(3):344-52.
The vasorelaxant profile of a novel azulene-1-carboxamidine derivative, HNS-32 [N1,N1-dimethyl-N2-(2-pyridylmethyl)-5-isopropyl-3,8-dimethyl-azulene-1-ca rboxamidine, CAS 186086-10-2], was investigated in the isolated rabbit aorta precontracted with high KCl, noradrenaline (NA) or phorbol 12, 13-dibutyrate (PDBu) and compared with those of nifedipine and nitroglycerin. In preparations without endothelium, HNS-32 elicited concentration-dependent, full inhibition of contractions elicited by high KCI (80 mM), NA (3x10 (-6) M) or PDBu (10 (-6) M). In contrast, nifedipine inhibited only the contraction elicited by membrane depolarization with high KCl. Nitroglycerin also attenuated high-KCl-, NA- and PDBu-elicited contractions effectively, although full suppression was obtained only for NA-elicited contraction. Whilst the relaxant effect of HNS-32 was not affected by the presence of endothelium, the relaxant response to acetylcholine was endothelium dependent. Addition of excess Ca2+ restored both the HNS-32-reduced tension in muscle precontracted with high KCI and the nifedipine-mediated tension decrease. Relaxation elicited by HNS-32 was not affected by the adenylate cyclase inhibitor, 9-(tetrahydro-2'-furyl) adenine (SQ 22,536, 10 (-4) M), the soluble guanylate cyclase inhibitor, 1H-(1,2,4)-oxadiazolo-(4,3-a)-quinoxalin-1-one (ODQ, 10 (-5) M) or a cocktail of K+ channel blockers (glybenclamide 10 (-6) M, tetraethylammonium 2x10 (-3) M, apamin 10 (-7) M, 4-aminopyridine 10 (-4) M and Ba2+ 10 (-5) M). These findings indicate that HNS-32 inhibits both L-type Ca2+ channel-dependent and -independent vascular contraction. Blockade of Ca2+ entry through L-type Ca2+ channels may be involved in the inhibitory effect of HNS-32 on the contraction due to membrane depolarization with high KCl. On the other hand, HNS-32 seems to inhibit Ca2+ channel-independent contraction via mechanism (s) other than elevation of cyclic nucleotides (cAMP and cGMP) and opening of K+ channels.
0(0,0,0,0)