Protein Information

ID 47
Name cytochrome P450 (protein family or complex)
Synonyms cytochrome P450; cytochrome P 450; CYP450; CYP 450

Compound Information

ID 1802
Name piperonyl butoxide
CAS 5-[[2-(2-butoxyethoxy)ethoxy]methyl]-6-propyl-1,3-benzodioxole

Reference

PubMed Abstract RScore(About this table)
10445162 Song H, Lang CA, Chen TS: The role of glutathione in p-aminophenol-induced nephrotoxicity in the mouse. Drug Chem Toxicol. 1999 Aug;22(3):529-44.
p-Aminophenol (PAP) produces nephrotoxicity in rats through a mechanism presumably involving oxidation and conjugation with glutathione (GSH). Recently it was found that PAP also causes nephrotoxicity in mice as evidenced by elevated blood urea nitrogen (BUN) and serum creatinine levels. The objective of this study was to further investigate the mechanism and elucidate the role of GSH in PAP-induced nephrotoxicity in the mouse. Male C57BL/6 mice injected i.p. with various doses of PAP were sacrificed at 12 hr for measurement of BUN and serum creatinine levels and determination of the extent of renal cortical nonprotein sulfhydryl (NPSH) and GSH depletion. PAP depleted renal cortical NPSH content in a dose- and time-dependent manner. Depletion of NPSH in mouse kidney did not occur at PAP doses below 600 mg/kg. Buthionine sulfoximine, an inhibitor of GSH synthesis, decreased nephrotoxicity. Ascorbate, a reducing agent, prevented PAP-induced nephrotoxicity and attenuated renal cortical NPSH depletion. However, acivicin and aminooxyacetic acid, inhibitors of gamma-glutamyltranspeptidase and beta-lyase, respectively, did not prevent toxicity in the mouse. Piperonyl butoxide, an inhibitor of cytochrome P-450 enzymes, enhanced nephrotoxicity and renal cysteine depletion but not GSH depletion. The results suggest that PAP-induced nephrotoxicity in the mouse may involve oxidation and formation of a GSH conjugate.
0(0,0,0,0)