Protein Information

ID 422
Name beta endorphin
Synonyms Beta endorphin; endorphin; B endorphin; Beta endorphin

Compound Information

ID 348
Name formaldehyde
CAS formaldehyde

Reference

PubMed Abstract RScore(About this table)
18359081 Seo YJ, Kwon MS, Choi HW, Jang JE, Lee JK, Jung JS, Park SH, Suh HW: The differential effect of morphine and beta-endorphin administered intracerebroventricularly on pERK and pCaMK-II expression induced by various nociceptive stimuli in mice brains. Neuropeptides. 2008 Jun;42(3):319-30. Epub 2008 Mar 21.
The present study was performed to characterize the differential molecular mechanisms of morphine and beta-endorphin which are injected intracerebroventiricularly in mice. In the immunoblot assay, the increases of phosphorylated extracellular signal-regulated protein kinase (pERK) as well as phosphorylated calcium/calmodulin-dependent protein kinase IIalpha (pCaMK-IIalpha) expression induced by noxious stimuli were attenuated by intracerebroventricular (i.c.v.) beta-endorphin pretreatment in the hypothalamus, but not by i.c.v. morphine pretreatment. In addition to these immunoblot results, immunohistochemical study also showed that the attenuation of pERK or pCaMK-IIalpha immunoreactivity elicited by i.c.v. pretreatment of beta-endorphin mainly occurred in the paraventricular nucleus of the hypothalamus (PVN). We also investigated the effect of morphine and beta-endorphin on pERK and pCaMK-IIalpha expression in the locus coeruleus (LC). I.c.v. injection of morphine significantly increased pERK as well as pCaMK-IIalpha expression in the locus coeruleus, while beta-endorphin increased only pCaMK-IIalpha in the LC. In addition, beta-endorphin significantly attenuated pERK expression induced by SP i.t. injection. These results suggest that the antinociceptive effects of supraspinally administered morphine and beta-endorphin are involved with differentially intracellular signal transduction molecules-pERK, pCaMK-IIalpha in the PVN and the LC.
7(0,0,0,7)