19617290 |
Bohmann K, Hennig G, Rogel U, Poremba C, Mueller BM, Fritz P, Stoerkel S, Schaefer KL: RNA extraction from archival formalin-fixed paraffin-embedded tissue: a comparison of manual, semiautomated, and fully automated purification methods. Clin Chem. 2009 Sep;55(9):1719-27. Epub 2009 Jul 17. BACKGROUND: Formalin-fixed paraffin-embedded (FFPE) tumor material represents a valuable resource for the analysis of RNA-based biomarkers, both in research laboratories and in routine clinical testing. A robust and automated RNA-extraction method with a high sample throughput is required. METHODS: We evaluated extraction performance for 4 silica-based RNA-extraction protocols: (a) a fully automated, bead-based RNA-isolation procedure; (b) its manual counterpart; (c) a semiautomated bead-based extraction system; and (d) a manual column-based extraction kit. RNA from 360 sections (90 sections per extraction method) of 30 FFPE tumor blocks up to 20 years of age was purified and analyzed by quantitative reverse-transcription PCR for ESR1 (estrogen receptor 1), PGR (progesterone receptor), ERBB2 [v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma derived oncogene homolog (avian)], and RPL37A (ribosomal protein L37a). RESULTS: The semiautomated protocol gave the best yield. The 3 bead-based methods showed good across-method correlations in both yield and relative mRNA amounts (r = 0.86-0.95 and 0.98, respectively). In contrast, correlations between any of the bead-based methods and the manual column-based method were worse (r = 0.77-0.95 and 0.96, respectively). The fully automated method showed the lowest variation from section to section (root mean square error, 0.32-0.35 Cq, where Cq is the quantification cycle) and required the least hands-on time (1 h). CONCLUSIONS: The fully automated RNA-purification method showed the best reproducibility in gene expression analyses of neighboring sections of tissue blocks between 3 and 20 years of age and required the least overall and hands-on times. This method appears well suited for high-throughput RNA analyses in both routine clinical testing and translational research studies with archived FFPE material. |
1(0,0,0,1) |